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1 Executive summary

1.1 Challenge overview

Achieving and maintaining normal sub-lingual blood flow in small
(< 20um) vessels, termed as microcirculation, is essential for critically ill
intensive care patients since this is where the delivery of blood and
oxygen to tissues occurs. However, historically, most clinical trials &
treatments have focused on blood flow in the larger blood vessels
(macrocirculation) [20, |21} 114], largely due to the greater ease with which
this can be practically measured.

Technological advances have enabled video recordings of the sub-lingual
microcirculation (i.e. from under the tongue) to be obtained using dark-
field microscopy (DFM). However, the difficulties in analysing these videos
has hindered the uptake and utilisation of this imaging modality. Currently,
these short video sequences are analysed mostly by hand, to quantify
the vessel density and flow within vessels within the field of view. The
manual analysis and vessel segmentation is an extremely labour intensive
procedure, which can take up to one hour to score a single video [12].

This challenge aimed to establish whether a single validated measure of
microcirculatory perfusion (microcirculatory flow index) can be predicted
directly from a DFM video sequence, without intermediate manual
analysis steps. Automatic analysis that can be carried out in (near)
real-time would facilitate the incorporation of microcirulatory targets into
clinical trials by enabling the impact of interventions to be quantified and
enacted upon with the aim of optimising the microcirculation and
improving patient outcomes.

1.2 Brief data overview

The data comprised of 800 grayscale videos of different length and
quality obtained via DFM from 52 patients monitored over 4 days. Figure
shows a couple of example frames selected from such videos. For
several patients, video sequences were recorded of the sub-lingual
microcirculation, while each recording was taken at a rate of 25 frames
per second with different lengths. These videos have been manually



analysed to obtain perfusion parameters per short clip, labelling each
data point. For detailed information please see Chapter 2

Figure 1: Example frames from sub-lingual microcirculation videos.

1.3 Main objectives

The main objective of whether a perfusion index can be predicted from a
DFM video sequence was separated into two sub-objectives:

1. understand and explore the video data to identify factors that
influence the automatic prediction (e.g. video stability, brightness,
etc.).

2. develop techniques to predict a single measure of perfusion.

1.4 State-of-the-art literature

State-of-the-art methods in automated monitoring of microcirculation
largely depend on intravital video microscopy (IVM) and data
science-based solutions. Mahmoud et. al [10] have used a novel two-step
image processing algorithm using a trained Convolutional Neural Network
(CNN) to functionally analyse IVM microscopic images without the need
for manual analysis. The first step used an adaptation of the
well-established Steger Unbiased Detector of Curvilinear Structures
(SUDCS) algorithm to segment the vessel structures. While in the second



step the authors used a 3D-CNN algorithm to determine whether a vessel
segment carries blood flow or not.

Demir et al. [2] presented an experimental algorithm that automatically
extracted microvascular network and quantitatively measures changes in
the microcirculation. It involved two key parts: video processing and
vessel segmentation. Microcirculatory videos were first stabilised using
the Gaussian gradient algorithm, while the local contrast and clarity was
improved by contrast limited adaptive histogram equalisation (CLAHE)
approach. The vessel segmentation was evaluated using functional
capillary density (FCD) values [2].

CapillaryNet is a fully automated state-of-the-art system to quantify skin
nutritive capillary density and red blood cell velocity from handheld
microscopy videos. The methodological details can be found here [6].
Similarly, Rizzuto et al. [16] performed video analysis of RBCs perfusion
in a microfluidic device using a novel transfer learning approach. It
involved the application of AlexNet with support vector machines (SVM)
for healthy cell classification.

Current literature shows that medical image analysis often suffers from
overfitting in CNNs due to typically small datasets [17]. Data
augmentation is used as an approach to overcome this problem through
applying various transformations to the training data images such as
translation, rotation, flipping and zooming. This provides a larger training
dataset and forces the model to be invariant to transformations that may
be present in the real world, hence reducing overfitting in the network.
Other regularisation methods, such as dropout and batch normalisation,
have also been developed to try to extend CNNs for application on
smaller datasets [17].

Instead of training a CNN from scratch on a new dataset, transfer learning
in computer vision aims to leverage models pre-trained on large datasets,
such as ImageNet with millions of available images, to transfer the
knowledge learned from one task to another. In [15], it was shown that
transferring knowledge from models built in ImageNet greatly improved
performance in chest X-ray detection across a wide range of pre-trained
models. Transfer learning can be done either as feature extraction, which
simply uses the feature output from a pre-trained model and feeds it into
a new classifier, or fine-tuning, which retrains the last few layers of the
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pre-trained model. Popular pre-trained models applied in transfer learning
medical images analysis include AlexNet, VGGNet, ResNet and
DenseNet [22].

1.5 Approach

This work pursued the task of automating the perfusion assessment in
three stages.

1. Modelling challenges, see Chapter[3]
2. Video pre-processing, see Chapter [4]

3. Machine learning based experiments, see Chapter 5|

1.6 Main conclusions

The work in this report demonstrates that a machine learning based model
is able to predict perfusion from a DFM video sequence. The accuracy
of these models varies between 60-70%. We identify that the machine
learning models require more data to be able to improve accuracy.

1.7 Limitations

Several limitations were identified and are listed below.

1. The dataset is comprised of a smaller number of data points than
would normally be used to train neural networks, the accuracy of
which increases with a larger dataset. As a result, several data
augmentation methods have been applied.

2. To feed videos into deep neural network architectures,
pre-processing steps were explored. For example, one of the
techniques compressed the video into a single image by applying
absolute temporal gradient for all the frames and then summed over
all the gradients with subsequent histogram equalisation. This may
result in information loss.

3. Manual probe placement results in varying stability of the recordings
adding to the noise in the data. We identified methods to detect
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the most unstable recordings that could be used to provide instant
feedback in the clinic.

4. Due to time and computational constraints, most model fits were not
repeated, nor were any confidence values calculated for any metrics.
This in conjunction with the small test set means result comparison
may not be statistically significant.

5. Vascular perfusion scores are not found as discrete groups in
real-world since patients can appear with conditions on a
continuous scale. However, the available labels in the data classify
patients in discrete perfusion scores.

1.8 Recommendations and future work

The work in this report has shown that deep learning based methods are
able to make predictions that are better than random prediction, which
shows the promise of automated analysis techniques. However, more data
is required for future work since deep learning methods are sensitive to
data size and class imbalance (see Section [3.1). Furthermore, there was
an inherent class imbalance present in the data particularly affecting lower
MFI patients.

On the methods front, more sophisticated methods for modelling the time
dimension may aid predictive accuracy while generative models may offer
the potential to produce synthetic data which could be used to augment
the small dataset.

The video sequences were found to suffer from stability and quality issues,
for which image processing methods were explored in this work to counter
such issues. Future work may explore the development of a dark-field
microscopy pen with an integrated inertial motion unit that can provide
instant feedback to the clinician as towhether the recording is of sufficient
quality.



2 Data overview

2.1 Dataset description and handling

The dataset provided for this study was obtained from 52 patients which
were monitored over four consecutive days, recording a sub-lingual flow
video four times per day. This led to about 800 videos of different lengths
and qualities. Due to the probe handling variation during recording, some
videos were too unsteady to be subsequently used for model training and
predictions purposes. The dataset provided also included a subset of
stabilised videos where the recording was more steady. Each video name
contained information about the patient anonymous ID, the day, the
equipment used, etc. To simplify the later analysis, the videos were
renamed with a unique 4-digit identifier and collected in a single folder.
Additionally, a comma separated value (CSV) file was created that links to
the unique video name. The CSV file also incorporated essential
information regarding the labelling, namely the perfusion parameters as
well as other parameters. The perfusion parameters were derived from a
proprietary software Automated Vascular Analysis (AVA, developed by
MicroVision Medical, Amsterdam, The Netherlands), and are listed below.
The MFIg and MFIv values (described below) were used for image-based
automated analysis algorithm training and validation.

TVD: total vessel density (mm2/mm2), this is the amount of the image
taken up by vessels.

PVD: perfused vessel density (mm2/mmz2), this is the density of vessels
with velocity scores of 2 or 3 (where 0 is no flow, 1 is intermittent, 2 is
sluggish and 3 is continuous).

PPV: partial perfused vessel parameter, this is the percentage of the ratio
of PVD and TVD.

Both of the following parameters, MFIq and MFlv, can be considered as a
‘perfusion index’. Either both or just a single are treated as the output
labels for each data point.

MFIlq: microcirculatory flow index by quadrant, where the image is divided



into quadrants and each quadrant is scored for the predominant velocity
(0,1,2,3) and the average is taken.

MFIv: microcirculatory flow index, where all capillary segments are
mapped manually. Each capillary segment is given a score (0,1,2,3).

After analysing the entire data, some mismatches were identified.
Considering all the videos as well as the perfusion parameter, there were
some cases in which a video had no perfusion parameters and vice
versa. Reasons for missing parameters were that parameters are only
generated for the best videos per patient per day so that the AVA software
was not able to compute parameters due to video quality issues (see

section [2.2).

2.2 Video quality issues

Due to the manual placement of the imaging probe on the patient’s
tongue, the exact placement of the probe on the tongue will vary each
time. Furthermore, a proportion of the recordings will also present as
unsteady due to human error. ldeally, the method needs to be robust
enough to account for this additional noise or omit recordings that are
deemed too unstable. Incorporating instant feedback on recording
steadiness would allow the clinician to know when to repeat the recording
and increase data quality.

2.3 Data summary
2.3.1 The output variables: MFlq and MFlv

The output variables whose values we are trying to predict in this challenge
are, for each video clip, the microcirculatory flow index of vessels (MFlv)
and the microcirculatory flow index by quadrant of the video (MFIq).

2.3.2 Relationship between MFlq and MFlv

Performing a linear regression on the data available tells us that the MFIq
and MFIv values of each video are strongly correlated. The line of linear
regression is given by MFlv = 0.50868 + 0.77862 - MFlg. The R-squared
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value for the linear regression is 0.849 and p-value < 0.001, which is
usually interpreted as good evidence for a linear relationship between the
two variables. Figure |2b tells us that the true value of MFlv is 0.125 or

Figure 2: Linear regression between output variables (on individual videos)
and residual differences.

less away from the predicted value for roughly half of the data available
(bars’ width is 0.25). It would be interesting to know whether the values
with the data points with the highest residuals are also the hardest to
predict using ML. Lastly, where multiple videos were available for a single
patient on a given day, the average MFI values are considered in Figure
[Bl  This shows that averaging multiple measures produce an even
stronger linear relationship and removes “outliers” concerning the linear
regression. The equation of the line of best fit is now given by
MFIv = 0.38281 + 0.82597 - MFlg with an R-squared value of 0.932 and
p-value < 0.001.
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Figure 3: Linear regression between output variables (per patient) and
residual differences.
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3 Modelling challenges

3.1 Class imbalance

The dataset received suffers from class imbalance, with the healthy class
samples outnumbering the diseased class samples. When a class
imbalance exists in the training data, the prior probability of the majority
class can cause models to over-classify the majority group, also resulting
in observations in minority groups being misclassified more often than the
majority group [9]. This problem is exacerbated as the dataset size
decreases and the class skew increases. Metrics, such as accuracy, can
also become misleading; for example, if the majority class is 99% of the
data, then always predicting the majority class label will give an accuracy
of close to 99%. Metrics should therefore be taken into consideration
alongside the data distribution.

From the available data, it was found that the data distribution is skewed
heavily towards MFI values of 3 (i.e. patients with healthy blood flow).
There are much fewer data observations of patients between MFI 0 and 2
(considered poor blood flow). We assumed that we can set the modelling
problem up as a classification task, binning the MFI values into classes 0,
1, 2 & 3 representing values (v) as 0>v<0.5, 0.5>=v<1.5, 1.5<=v<2.5
and v>2.5. Fig. |4 shows the class proportions for MFIv and MFIq for the
entire dataset where it is evident that healthy blood flow (class 3) is the
majority class with a proportion of approximately 75%. With the small size
of the overall dataset, of 666 usable videos, there are very few examples
of low MFI scores (0 & 1) for the model to be trained and tested on. The
class imbalance combined with the relatively small dataset makes the
classification very difficult.

There have been various methods proposed to combat the class
imbalance problem in the deep learning literature. A thorough review can
be found in [9], and a brief overview of methods will be provided here.
Class imbalance methods can be broadly split into three categories. The
first, data-level methods, use data sampling methods such as random
under-sampling (RUS), which discards samples from the majority class,
and random over-sampling (ROS), which duplicates samples from the
minority classes. When done in its simplest form, RUS reduces the
amount of training data in the model, which is already scarce in this
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dataset, whilst ROS can cause overfitting [9]. Variants of RUS and ROS
have been proposed, such as two-phase learning, which first trains using
RUS and then fine-tunes using all of the data, but the performance of
variants may not consistently outperform simple RUS and ROS, with ROS
outperforming RUS in most cases [13]. In algorithm methods,
modifications are made to the learning algorithm, usually in the form of
weighting or cost function adjustments, to reduce bias towards the
majority group. Methods such as output thresholding, which divides the
network outputs class by its prior probability, and new cost functions such
as mean false error, which splits the typical mean squared error cost into
false positive and negative error, have been shown to improve
classification performance. Lastly, hybrid methods combine data-level
and algorithm-level methods. There has not been a conclusive
comparison across class imbalance treatment methods with many
variations of datasets and class skews. Choosing the correct type of
class imbalance treatment is therefore an open problem, and currently
trial-and-error is required.
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Figure 4: Class proportion for MFlv & MFIq, in the available data.
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3.2 Video quality

Another challenge is that images are often unsteady due to probe
movement by the clinician/user, as the probe is a handheld tool. This
additional noise could hinder our analysis. We aimed to investigate
whether a potential scoring mechanism of the video ’steadiness’ could
allow us to identify and remove the most unstable videos and increase
the accuracy of our classification. The primary challenge in implementing
this is that labels do not currently exist for 'unsteady’ or ’steady’ images.
Nevertheless, our investigation of these approaches offers useful insight
for future research.

3.2.1 Approach 1: Pixel differencing

Multiple approaches were carried out. The first approach is a differencing
method. A video comprises of n frames with width (w) and height (h).
Each frame of a video was converted into a w x h numpy array of pixel
values. The arrays were stacked into a single matrix per video, with final
size (w x h x n). For each stack (video), we calculated the difference
between each array (frame) and the previous array, using the the
Manhattan norm (the sum of the absolute values) or zero norm (the
number of elements not equal to zero) reflective of a change in pixels
between successive frames. This resulted in a list of values of length n-1
for each video, representing the difference between each successive pair
of frames. We hypothesised that unstable videos would have a larger
mean change from frame to frame. We compared this metric in stabilised
and unstabilised videos (Figure 5bj and [5a).

The mean and standard deviation in each video has been calculated with
distribution shown in Figure [6al We then identified the videos showing
the highest mean change in pixels (the top 3%) as shown in Figure [6b}
and therefore in theory, large flux in image presented. We then looked
at these images using the optical flow method described in the following
section. A caveat of this approach is that it may not work as expected if the
change in pixels due to shaking is on an equal level to the change in pixels
due to blood flow. Indeed, using the optical flow method, it appeared that
although a high proportion of these identified videos were also identified
as unstable, videos showing clear changes in blood flow also appeared in
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Figure 5: Assessing change in image stability using pixel differencing and
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Figure 6: Assessing frame to frame change in pixels for all videos.

3.2.2 Optical flow to determine video stability

An alternative method involves using optical flow to estimate the stability
of each video, which may better identify unsteadiness rather than blood
flow movement changes. A good quality video presents with minimal jitter
or changes in brightness. When processed, a good quality video gives us
a clear CLAHE image with fewer artefacts. When an image with few
artefacts is used as a binary mask for an image, the optical flow tracking
is localised to the vessel pathways. However, the presence of artefacts
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causes the optical flow to be smeared across the whole image, as shown
in Figure [7] below. These illustrations are originally grayscale images, but
here they have been represented using contrasting colours to highlight
their differences. All three images shown in the pictures below are for
healthy patients with MFlv = 3. The first image clearly shows the vessel
structures and the blood flow in them, while it becomes increasingly
harder to discern the vessel structures in subsequent images. From
preliminary experiments with the dataset, it was observed that when the
video has a smear pattern that covers over 75% of the screen, the
cytocam measurements are highly unstable videos. The next steps would
be to produce and input dataset with the videos that become smeared
removed, and assess whether this improves classification accuracy
enough to warrant removal or avoidance of these types of videos in the
future.

(a) Low Smear (b) Intermediate Smear (c) High Smear

Figure 7: Assessment of the video using calculation of optical flow and
combining the lines indicating flow direction and magnitude into one image.
A smeared image suggests an unsteady video.

3.3 Limitations and future implementation

A caveat in this approach of removing unsteady videos to increase the
accuracy of subsequent analysis is that it reduces the already limited
sample size. However, assessing whether the removal of unsteady
videos improves analysis accuracy will, in practice, be crucial information
to improve the performance of the medical device. For example, if the
clinician can receive instant feedback on video quality they can be
advised whether to take a new recording immediately. Therefore it will be
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of great use to define at what point poor video quality results in
insufficient accuracy when classifying.

In practice, a potentially quicker and simpler way to assess stabilisation
would be to incorporate an inertial motion unit (IMU) into the cytocam
probe. This IMU device is a sensor that is highly sensitive to changes in
motion. By assessing pitch/roll etc that occurred throughout a video
recording, the user could be supplied with immediate feedback on user
motion. Within the research and development phase, correlation of IMU
recorded movement with the stability of output images in terms of our
metrics could help to determine IMU cutoff thresholds. This information
will then be needed to assess which method would be most appropriate
to use based on accuracy gain versus costs. This prior investigation of
the effect of video quality on outcome accuracy is therefore an important
step towards producing a cost and time-efficient method to improve video
quality.
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4 Data pre-processing

Multiple methods of pre-processing have been assesed before feeding the
data into analysis frameworks.

4.1 Temporal gradient

To start with, a temporal gradient of consecutive frames and averaged
over all the frames of a video has been considered. The temporal
gradient of two consecutive frames seems informative however averaging
over all the frame may not. Figure |8/ depicts an example of such analysis.
The black and white image on the left is a frame of video. The middle
image is the temporal gradient of two randomly selected successive
frames of the video. The image on the right is the result of averaging all
the temporal gradients between successive frames of the whole video.
The red region in the image is a region with high average pixel intensity at

Figure 8: One frame with first temporal gradient and the average gradient
over all consecutive frames.

initial frame and low average intensity in the next frame. On the other
hand, a blue region in the image is a region with low average pixel
intensity at initial frame and high average intensity in the next one. Taking
the sum or the mean of temporal gradients does not make lots of intuitive
sense because the blue and the red regions appear randomly and can
cancel each other out and increase noise. However, looking at single
temporal gradient frames, there might exist some interesting signals
which a deep learning algorithm might be able to extract. The intuition
here is that, the size and distances between the red and blue dots can

18



signal the strength and the velocity of the blood flow moving through the
vessels. The size signals the width of the vessels and the distance
between successive red/blue patches signal the flow. The hypothesis is
that, on average, size and distance between different red/blue patches
are different in sick vs. healthy patients. A deep learning or computer
vision technique might be able to learn these patterns.

One upside of such an approach is the fact that each video with N frames
results in N-1 temporal gradients (data points). This is in contrast to MAD
method which transformed each video into a single frame (data point).
This means that number of images for training is large. One possible
non-deep learning approach is to use masking as masking only select the
parts of the image which contain vessels. This can then be followed by
analysing the size of red/blue dots and distances between them. One
could also incorporate spatial Fourier analysis on the masked parts since
Fourier transform gives the spatial frequency which can be translated into
distance. Secondly, the second-order temporal gradient has been looked
at where both the gradient of two consecutive frames as well as the
average over all the frames of the video seem informative and able to
capture the main visible vessels. Figure [9] depicts an example of such
analysis. The black and white image on the left is a frame of video. The
middle image is the second temporal gradient of three randomly selected
successive frames of the video. The image on the right is the result of
averaging all the second temporal gradients between successive frames
of the video.

2

Figure 9: One frame with second temporal gradient and the average
gradient over all consecutive frames.
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4.2 Mean absolute difference and CLAHE

In this approach, an absolute temporal difference between successive
frames was calculated. We then averaged all the absolute temporal
differences between the frames to convert a video into a single image. If
the videos are stable enough, we hypothesised that the mean absolute
mean differences of a video should contain the fine-grained traces of the
micro and macro-circulation patterns in the video. This means that for the
images with low circulation, the traces of patterns should be less visible
and distinguishable. Contrast limited adaptive histogram equalisation
(CLAHE) was applied as a histogram equalisation method to remove
unwanted differences in colour spaces between different videos. One
disadvantage of this method is the fact that it turns the videos into single
images which means that we have only a small number of data points
after these operations. One possible way to solve this issue is to perform
the aforementioned procedures on n consecutive frames instead of the
whole video. This way, each video will give us several images.

Figure 10: Results of mean absolute difference (MAD) followed by contrast
limited adaptive histogram equalisation (CLAHE).

4.3 Temporal moving average

We have found evidence that where blood flows intermittently, a simple
10-frame average (corresponding to 0.5 seconds of a video) reconstructs
the full paths of blood vessels while denoising the frames. Figure
compares an original frame (on the left) to the temporal moving average
of ten consecutive frames - including the original frame (on the right). Our
evidence, however, is limited to this specific example and we have not
further used this approach in our study.
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Figure 11: A single frame (left) and a 10-frame moving average (right).
Where blood flows intermittently, the moving average seems to be able to
reconstruct the full path of blood vessels.

4.4 Ridge detection

This method identifies the ’ridges’ in the image, which are defined as
curves whose pixel points are local maximum. The aim of this approach
is to separate the main region of interest (ROI): micro-vessels from main
vessels and their surrounding tissues as only the status of
microcirculation will play a role in the classification problem. Specifically,
in the first step, we find ridges on each input video frame via computing
the eigenvalues of matrix of second-order derivative of an image, also
known as hessian matrix. To increase the signal-to-noise (SNR) ratio of
the initially segmented maps, we subsequently apply a morphological
transformation, i.e. a dilation function to each segmented frame.
Technically, dilation operation is where one will "expand” the edges of the
image. The way these work is we work with a sliding kernel and we
observe an impact of the kernel size for the final image quality in Figure
[12] While one slide goes around, and if all of the pixels are black, then we
get black, otherwise, we obtain a white output.

Furthermore, we threshold (T=130) the denoised frames and sum all
frames up to get the segmented blood flow maps. Lastly, as shown in
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Figure 12: Extracted blood flow maps from input videos via ridge detection.

Figure 13: The denoising effect of morphological operation with change in
kernel size.
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Figure[12] to highlight the blood flow, we invert the intensity of segmented
and therefore get a bright-field blood flow microscopy image from the
input video. In Figure [12] we plot the segmented blood flow of 6 distinct
patients (1st row: healthy and 2nd row: no flow). Within this study, we
observe a significant impact of the input kernel size in the morphological
transformation function. We visualised this effect in Figure the
denoising effect as well as the lost of fine details of the map become
stronger when we increase the size of kernel in morphological
operations.

4.5 Optical flow

The main intuition behind this approach was to understand if the blood
flow between successive frames can be represented in one image, where
the intensity of each pixel represents how much blood has flowed through
that point in the image. A higher pixel intensity would indicate a higher
blood flow through that area, and a lower intensity would represent little
to no blood flow. However, this is not very straightforward as the pixel
intensities in each image are affected by brightness, video stability and
relative movement between the measuring instrument and the patient. To
address these problems we use a three-fold approach - first the CLAHE
image for each video is converted into a binary image where the vessel
pathways have a value of 1 and the rest get a value of 0. This image is
then used as a binary mask for each frame in the denoised video so that
only the motion of pixels in the capillaries is retained. Finally, the optical
flow between successive frames is calculated using the Gunnar Farneback
algorithm([4]. All these frames are then blended to produce one final output
image that represents the optical flow across the span of the entire video.
This entire process is depicted in Figure [T4]

The output is a gray scale image, with brighter points indicating a higher
change in pixel intensity over time, and darker pixels indicating little to no
changes in pixel intensity. A salient and contiguous cluster of pixels
intensities resembling the blood flow across the vessel structures are
observed in the image for MFIv = 3. However, this is not the case for the
image with MFlv = 0 as there are no salient pixel clusters representing a
flow of blood across the vessel. This conforms with the intuition that
higher optical flow must be observed in cases where blood flow is
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Figure 14: The optical flow calculation results from vessels by using binary
mask corresponding to the blood vessels.

contiguous. In theory, the output image of MFlv = 3 should be 0, however
there is still a scattered distribution of pixels in the output image. This is
due to the excessive fluctuations in brightness, jitter and air bubbles
present that result in noisy measurement. Given more time, better noise
filtering and adaptive video masking techniques can be further explored
address this problem.
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5 Experiments and results

This section describes our various set of experiments on data
preparation, analysis by a simple image processing based approach,
dimensionality reduction, and analysis by deep learning based
approaches. The experiments in this work were implemented in Python
utilising various relevant data analysis libraries including NumPy,
Matplotlib, OpenCV, TensorFlow, Keras, and Pandas. The experiments
were run remotely on University of Birmingham’s provided Baskerville
system (https://www.baskerville.ac.uk/).

5.1 Data preparation
5.1.1 Train, validation & test splits

After data cleaning (as described in Sections[2.1]&[3.1), the overall dataset
size was 666. This data has been split into train, validation and testing with
splits of 70% (458), 15% (104) and 15% (104) respectively. When splitting,
patients were stratified so as to avoid data leakage. For example, Patient
1’s videos were only in the training dataset, whilst Patient 2’s might have
only been in the validation dataset, with no videos in other splits. The
results provided in the following sections have consistent train, validation
and test datasets to facilitate fair comparison. Class distributions for each
split are shown in Figure[T5]and show that whilst class imbalance remains
across all splits, each split does contain members of each class.

5.1.2 Class weights

Given the significant class imbalance previously described in the dataset,
class weights were calculated and implemented in the neural network

classifiers (Sections [5.4.1], and |5.4.3) to minimise the impact of

class imbalance.

Class weights w; were calculated for each class i according to the label
distribution on the training set using the formula shown in Equation[fjwhere
P; represents the number of positive cases of class i, N; represents the
number of negative cases of class i, and n. is the number of classes.
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Figure 15: Class distribution per training, validation & test splits.

Calculated class weights are shown in Table 1]

N; + B
Wi = )
n. X P;

(1)

Table 1: Class weights, estimated as per class distribution in training data,
for use in network learning process.

Class Weights

0 31.58
1 18.95
2 1.53
3 0.31

5.1.3 Data augmentation

Data augmentation is the practice of increasing the sample size of a
dataset through the use of transformations such as translations, rotation,
and zooming and it is commonly used in computer vision literature,
including in medical imaging [7]. Within the context of microvascular
imaging using DFM, augmentation performed using translation or rotation

26



is considered analogous to the natural changes observed in acquiring
subsequent images due to factors such as variation in probe-tongue
positioning. Importantly, transformations such as zooming would not be
plausible given the fixed focal length of the DFM device.

The following data augmentation approaches were applied:

Filtering For machine learning techniques that analyse the flow of pixels
such as optical flow, it is vital to have videos with reduced noise. To
prepare videos for that challenge they are disassembled into frames,
denoised and assembled back to a video. The denoising is adjusted to
appropriately remove noise without removing image details. The number
of surrounding images to use for the target image is evaluated to be three.
Rotation & flipping This technique included rotating the videos clock- or
counter-clockwise as well as flipping it horizontally or vertically. In this
way, more input data was generated.

5.2 Image processing based methods
5.2.1 Pixel change

As part of this work, we assumed that the complexity of the problem
requires deep learning methods to solve. However, we also assessed
whether it is possible to distinguish classes based on changes in pixel
intensity and in pixel movements. Using the methods described in 3.2.1,
we assessed whether change in pixels from frame to frame varied more
or less within the different classes. Figure highlights the large
difference in the number of samples within each class but ANOVA (with
unequal sample number) shows that there is not a significant difference
between classes (p=0.245) (see Figure [17). We also looked at temporal
changes (Figure [18) but no clear pattern was identified.

5.2.2 Pixel intensity change

Here, we are providing a simple analysis of pixel intensity. We are
investigating whether a simple approach can inform video classification.
We answer two questions. First, do pixels’ intensity changes from one
frame to the next in the original videos correlate to the MFIv value?
Second, does the pixel intensity of single images obtained through the
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Figure 16: Mean difference between frames divided by MFIv values (v)
with classes 0,1,2 and 3 defined as 0>v<0.5, 0.5>=v<1.5, 1.5<=v<2.5
and v>2.5 respectively.

augmentation of the original videos, such as through segmentation and
optical flow analysis, correlate to the MFlv values?

Mean pixel intensity change. From the analysis of all videos provided,
we observe no correlation between the average pixel intensity change
(from one frame to the next) and the MFIv values. Furthermore, the
average pixel intensity change is equal to 0. This implies that, on
average, any pixel intensity increase will be offset by a pixel intensity
decrease (consider the large amount of pixels involved: each frame has
roughly 500 x 500 = 250,000 pixels and each video has at least 50
frames, totalling to at least 12,500,000 pixel intensity variations measured
in each video).

Brief conclusion We find that a simple statistical analysis of frames yields
no-correlation relationship between pixel changes from one frame to the
next and the MFIv values in a video.
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Figure 17: Mean difference between frames divided by MFIv values (v)
with classes 0,1,2 and 3 defined as 0>v<0.5, 0.5>=v<1.5, 1.5<=v<2.5
and v>2.5 respectively. ANOVA between means: p= 0.245

Figure 18: Manhattan Norm difference from frame to frame divided
by MFIv values (v) with classes 0,1,2 and 3 defined as 0>v<0.5,
0.5>=v<1.5, 1.5<=v<2.5 and v>2.5 respectively.

5.3 Dimensionality reduction based methods

Dimensionality reduction algorithms seek to reduce the number of
dimensions of data by performing transformations to a lower-dimensional
space whilst retaining as much of the variance in the data as possible. As
a result, they have a longstanding history of use for visualising, clustering
and modelling high-dimensional data [1]. To explore the utility of
dimensionality reduction on our dataset, three linear dimensionality
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Figure 19: Mean pixel intensity change obtained by first a) generating new
frames by subtracting the value of pixels of consecutive frames and then
b) for each video, taking the mean value of all new frames.

reduction algorithms were explored: principal component analysis (PCA),
linear discriminant analysis (LDA) and neighborhood components
analysis (NCA).

The inputs consisted of a (50,176) dimensional vector for each video,
derived from a (224,224) centre-crop taken from the 2D CLAHE
transformation described in Section 4.2 The dataset was then scaled to
standard mean and unit variance before each algorithm was fitted on the
training set. The fitted model was then used to transform the training set
to a lower-dimensional space. This transformed training data was plotted
to visualise the degree of class separation and used to train a k-nearest
neigbhours (KNN) classifier which was then evaluated on a held-out test
set that underwent the same transformations learned in the fitting stage.
For each dimensionality reduction algorithm, the top two and three
components were visualised and evaluated with a KNN classifier (for
k = 1,3,5) with mean accuracy reported on the held-out test set. As seen
in Figure none of the methods produced a clear visual separation
between classes using either the first two or three components. For all
dimension reduction methods, the greatest mean accuracy from the KNN
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classifier was reported with £ = 5. Using the top two components PCA
was the best performing method with a mean test accuracy of 62%,
despite providing perhaps the lowest visual separation, although this
assessment is subjective. Suprisingly, the addition of the third component
worsened classification performance for PCA (60% vs 62%), however, it
improved predictive performance for both LDA and NCA with LDA
reporting the highest mean test accuracy of 63%.

5.4 Deep learning based methods

In the following sub-sections, we describe various experiments and their
results with deep learning based approaches.

5.4.1 2D-CNN with absolute temporal gradient image

The pre-processing in Section [4.2|converted the video frames into a single
2D image, aiming to encapsulate the temporal behaviour of the blood flow
whilst doing so. These images can then be fed into a CNN architecture
(Figure [21), which aims to extract the spatial information in the images to
classify the MFlv into either classes 0, 1, 2 or 3.

Within this experiment, various combinations of pre-trained models for
transfer learning were tested. The class imbalance treatment
implemented was class weights, as described in Section 5.1.2l Data
augmentation was also applied during training with horizontal flipping,
vertical flipping and random rotations with a range of 10 degrees. These
were chosen as they make sense in a clinical and microscopy setting.
Zooming was not chosen as an augmentation method as the dark field
microscope has a fixed focal length, and contrast methods were not
chosen as they may distort the images in a non-realistic manner. Time
restrictions prevented testing whether additional augmentation strategies
would have benefited model performance, and also testing further class
imbalance treatments.

The chosen pre-trained models were VGG16, InceptionV3, ResNet101
and EfficientNetB7 with default image input sizes [19]. The top prediction
layers of the pre-trained models were discarded, and appended was a
global average pooling layer followed by a softmax layer, which
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normalises the outputs into a probability distribution between 0 and 1,
with the output class then being assigned to the maximum probability.
Initially, the pre-trained layer weights were frozen, and the model was fit
using the Adam optimiser with a default learning rate of 10~3, with the
epochs set to 200 with early stopping to avoid overfitting. Fine-tuning was
then carried out after initial convergence, by unfreezing some layers in the
pre-trained model and re-training the model using a smaller learning rate
of 10~°. For VGG, the entire base model was unfrozen. For InceptionV3,
the last 2 convolution blocks were unfrozen. For EfficientNet, block 7 was
unfrozen. For ResNet101, the last convolutional block was unfrozen. The
choice of layer unfreezing was based on computational considerations as
well as prior knowledge of each model.

To illustrate the importance of transfer learning with little data, VGG16
was trained first from scratch and then using the pre-trained weights,
without the use of class weighting. Figure compares the loss of the
two initialisations. The loss with random weights shows erratic learning
with no convergence, whilst the VGG loss with ImageNet weights shows
clear learning and convergence after approximately 20 epochs. Figure
shows further evidence of the benefit of using pre-trained weights, with
the confusion matrix for random weights showing that the model simply
predicts the majority class at each test instance, whilst with ImageNet
initialisation the model shows learning of all classes.

Table [2]shows the results from the 2D CNN with the pre-processed images.
Precision and recall for each class are given, with average accuracy and
the average weighted F1 score across all classes. The average accuracy
needs to be taken into consideration with the distribution of the majority
class in the test set, as simply predicting an MFI value of 3 each time gives
an accuracy of 68.3%. The method column refers to whether fine-tuning,
class weights or both were applied to the model.

It is evident that not using class weights to combat class imbalance
produces good precision and recall for the majority of class 3 in
comparison to other classes, but is inept at identifying poor blood flows. It
doesn’t however beat the simple baseline of 68%. Using class weights
results in much better recall and precision for the minority classes, except
ResNet101, which still has poor performance across all minority classes.
Interestingly, fine-tuning did not provide any significant performance gain

32



Table 2: Results of various popular 2D-CNN experiments using pre-
processed images as their input.

Class 0 1 2 3

Model Method Accuracy F1 Prec Rec Prec Rec Prec Rec Prec Rec
VGG16 None 0.65 0.34 1 0.18 0 0 0.25 0.27 0.73 0.87
VGG16 Fine-tune 0.60 0.31 0.33 0.09 0 0 0.26 0.47 0.76 0.76
VGG16 Class weights 0.62 043 0.7 064 O 0 0.23 0.40 0.78 0.72
VGG16 Class weights + Fine-tune 0.50 0.31 050 0.18 0 0 0.21 040 0.72 0.70
InceptionV3 None 0.65 025 0 0 0 0 0.21 0.20 0.73 0.92
InceptionV3 Fine-tune 0.66 028 0 0 0 0 0.29 0.33 0.74 0.90
InceptionV3 Class weights 0.66 0.44 070 064 O 0 0.24 0.33 0.79 0.80
InceptionV3 Class weights + Fine-tune 0.63 045 055 055 033 0.14 0.20 0.23 0.79 0.76
EfficentNetB7  None 0.65 0.32 1 0.09 0.17 0 0.31 0.33 0.73 0.87
EfficientNetB7 Fine-tune 0.66 0.30 1 0.09 0 0 0.27 0.20 0.72 0.90
EfficientNetB7 Class weights 0.62 048 0.47 0.64 040 0.29 0.33 0.21 0.89 0.69
EfficientNetB7 Class weights + Fine-tune 0.63 0.51 054 0.64 040 0.29 0.21 040 086 0.72
ResNet101 None 0.61 025 0 0 0 0 0.19 0.27 0.72 0.83
ResNet101 Fine-tune 0.61 026 0 0 0 0 0.21 0.40 0.75 0.80
ResNet101 Class weights 0.57 026 0 0 0 0 0.20 0.40 0.80 0.75
ResNet101 Class weights + Fine-tune 0.56 026 0 0 0 0 0.21 040 0.80 0.72

across all models. This is likely due to the model not being capable of
learning very task-specific features with the small dataset provided.
Further work could investigate this fine-tuning process, for example, the
number of layers to freeze and the learning rates used. The fine-tuning
process is likely to be important as the dataset size increases, with the
perfusion data differing from the ImageNet data and therefore requiring
different features to be learned.

The prediction for a model with the best average F1 score over all classes
was EfficientNetB7 with a score of 0.51. It is assumed by the authors this
is because EfficientNetB7 accepts an image size of (600,600), which is
much closer to the large image sizes in the perfusion data, whereas the
other models accept smaller image sizes (e.g. (224,224)). It is possible
that scaling down the images results in a loss of information, but a range
of image size inputs across models would need to be trialled to confirm
this. The confusion matrix for this model for all classes is given in Fig.
The recall and F1 for MFI 0 & 3 are better than classes 1 & 2, possibly
due to the distribution assumption set using class weights. Another
possible reasoning in the worse prediction of MFI 1 & 2 is that clinicians
have less certainty in scoring these MFI scores, resulting in variance
across patients and therefore additional model noise. The results
obtained by this classification are much better than randomly choosing
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any class, suggesting that the CNN is appropriately learning features
from the pre-processed images that it can then use to correctly classify
the perfusion index. Additional data, particularly of lower MFI patients,
could result in @ much better classification across all classes. Although
the clinician metrics are unknown, it is assumed that clinicians perform
much better than this model in predicting the perfusion index so further
work is required.

5.4.2 2D-CNN with segmented blood flow maps

The motivation behind this 2-step classification after segmentation
approach is largely becuase only small vessels are relevant to
microcirculation classification. Giant vessels and their surrounding tissue
play a minor or no role in the classification problem. The workflow of this
approach is depicted in Figure [25a: we perform a ridge-based vessel
detection followed by a sum operation along the time dimension of all
frames in an input video for both micro-vessel ROI localisation and
dimensionality reduction. Currently, we trained VGG-16 on top of the
segmented blood flow maps. The challenges we have are the training set
is rather small and the label distribution is extremely imbalanced. To
address the problem of the limited training set, we fine tuned our
classification network on the pre-trained weights from ImageNet
classification. Additionally, we performed different kinds of data
augmentation techniques such as random cropping, affine transformation,
random contrast, and random zoom in/out. To address the class
imbalance problem, we used class weighting as described earlier.

According to patient-wise stratification, we split the initial dataset into
training (458 videos), validation (104 videos) and test sets (104 videos).
The result of our 2D CNN trained with segmented blood flow maps is
shown in Figure b and c. Although the class weight addresses the
class imbalance problem, we still observe the CNN model was biased
and tend to vote for the majority class (MFlv=3) frequently (see Figure
C).
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5.4.3 2D-CNN + RNN

To harness both 2D spatial information from each frame, and temporal
data from the image sequence, a hybrid neural network architecture was
constructed using a CNN and recurrent neural network (RNN) for spatial
and temporal information respectively. To automatically extract features
from each 2D frame within a video, we used transfer learning with the
InceptionV3 CNN [18] architecture, that has been pre-trained on the
ImageNet dataset [3]. This is similar to the approaches outlined in
Sections 5.4.1] & 5.4.2] however differs in being performed on a
frame-by-frame basis, rather than on images derived from averaging
across frames in a video.

Despite ImageNet being a generic imaging dataset, rather than medical
imaging specific, pre-training models on it have been shown to confer
enhanced performance when applied to medical imaging classification
problems, such as chest radiographs [15], giving rise to the popularity of
this form of transfer learning within the medical imaging literature.
Therefore we can reasonably expect such an approach to be beneficial,
even with a highly specialised form of an image such as those produced
by DFM.

In a typical image classification application, as shown in Sections &
[5.4.2] the top layer of InceptionV3 would be trained to predict the desired
classes using a softmax activation function to produce an n-dimensional
output, where n is the number of classes and represents a valid
probability distribution. In the case of the CNN-RNN hybrid architecture,
we remove the top layer and output a 2048-dimensional latent
representation of the input image, with the hypothesis that this may confer
information useful for classification when input to the sequence model.
The RNN architecture consists of two Gated Recurrent Unit (GRU) layers
and a final fully connected layer with softmax activation function to
produce class probabilities. In simple terms, the GRU can be understood
to represent a form of selective memory that learns which features from
the sequence should be retained and used for prediction via minimising a
loss function of categorical cross-entropy with the Adam optimisier.
Similar to previous experiments the same training, validation & test splits
and class weights are used.
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Three experiments were performed, the first using a sequence of 20
frames and raw frames as the inputs, the second using a sequence of
100 frames and the third using 20 frames with images that have
undergone ridge detection as described in Section [4.4] Results for these
three experiments are shown in Table [3| with the confusion matrices and
learning curves shown in Figure [26]

Table 3: Results of CNN + RNN, which aims to exploit spatial and temporal
information.

Class: Avg. 0 1 2 3
Input Acc F1 Prec Rec Prec Rec Prec Rec Prec Rec
20 frames, Raw  0.69 0.61 0.60 0.27 0 0 0.50 0.07 0.70 0.96
100 frames, Raw 0.65 0.59 0 0 0.50 0.14 0.15 0.13 0.73 0.92
20 frames, Ridge 0.69 0.58 0 0 0 0 0.50 0.07 0.70 1
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We can see that results are broadly similar for all modelling approaches,
with a fractionally higher weighted F1 score for the 20 frame sequences
with raw images. Despite using class weights in an attempt to mitigate
the class imbalance, we can see that the classifier is still highly biased
towards prediction of the majority class. Interestingly the images
processed with ridge detection displayed the worst performance, despite
appearing easier to identify on visual inspection. This may be due to the
fact that pre-processing results in a loss of information and deep learning
algorithms typically perform well on complex raw data from which they are
able to extract meaningful features.

When considering the reported results, it is important to note that owing
to time & computational constraints, multiple model fits were not
performed, and thus prediction uncertainty and reliability cannot be
quantified. Anecdotal experience during the model construction process
would suggest that the current models exhibit high variability between fits
and therefore the reported metrics shown in Table may not be
consistent.

A final approach of using the weights learned through training in Section
5.4.1] in the CNN, in attempt to extract more meaningful features, was
tested and whilst the results are not formally documented they did not
show a performance gain over those shown in Table 3]

5.4.4 2D-CNN + RNN + data augmentation

The 2D CNN with RNN is a promising approach for the challenge. Using
the augmentation technique described in section [5.4.4 the distribution
from Figure [29|is generated. Apart from the class with a MFIq value of 1,
the distribution seems more balanced, having a threshold of 1.8. To
generate more data, the quadrant videos are again augmented by
rotating and flipping, obtaining a set of circa 1500 quadrant videos. The
results are summarised in Figure Looking at the results from this
study it becomes obvious that the algorithm tends to predict an MFI of 3
for every video on bigger datasets. It emphasises the challenge of clearly
identifying no-flow videos.

Cropping To get the most out of the provided data another augmentation
technique applied is cropping. Since a MFIq score is given for each
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quadrant a much better-balanced dataset can be created by cropping
each video and assigning the individual MFIq score.
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Figure 20: Dimensionality reduction approaches, exploring PCA, LDA,
and NCA with 2D and 3D visualisation and the subsequent classification
performance by k-NN classifier.
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Figure 21: lllustration of CNN processing scheme. (modified
from https.://medium.com/analytics-vidhya/understanding-convolution-
operations-in-cnn-19140458164d4)

(a) VGG with random weights (b) VGG with ImageNet weights

Figure 22: VGG network training loss with random and ImageNet weights
initialisation.

(a) VGG with random weights (b) VGG with ImageNet weights

Figure 23: VGG confusion matrix with random and ImageNet weights
initialisation.
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Figure 24: Confusion matrix for EfficientNetB7 with class weights and fine-
tuning.

Dark field Detected vessel 2-dimentional

microscopy video blood flow Neural network

a

b c

Figure 25: (a) the workflow of the proposed 2D CNN with segmented blood
flow maps as input. (b) the loss curve of fine-tuning a VGG-16 model pre-
trained on ImageNet dataset. (c) we plot the confusion matrix to visualise
the multi-class classification performance.
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Figure 26: Results of CNN+RNN experiments, which aim to exploit both
spatial and temporal information.
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Figure 27: The result of applying the CNN + RNN on augmented data:
a) using only the quadrant videos, b) using a subset of all augmented
quadrant videos (including rotating and flipping) and c) using the all
augmented videos (including rotating and flipping).
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Figure 28: lllustration of CNN + RNN model design, note that this network
aims to exploit both spatial and temporal information.

Figure 29: MFIq distribution from the quadrant cropping.
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Figure 30: Quadrant based rating and a demonstration of data
augmentation.
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6 Future work and research avenues

6.1 Data

As seen in the performance of our classification algorithms, the
imbalanced dataset lead to frequent prediction of the majority class
(MFI=3). This is particularly problematic in a clinical context where
identification of the minority classes (MFI=0,1) is of greater relevance.
Several attempts were made to mitigate this imbalance, including
augmentation and class weights, however neither was entirely
satisfactory. Selective augmentation of the minority class was discussed,
however this would be expected to reduce variance within the minority
class, vs the unaugmented majority class, which may hamper
generalisation of the trained algorithm to both test set and real-world
minority classes.

Whilst something of a machine learning cliche, it is likely that the greatest
improvement to classification performance would arise from additional
data. Whilst public datasets are available for other medical imaging
modalities, such as chest radiographs [8], we were unable to identify
another source of microcirculatory videos. A potential solution to this
could be collaboration with other research groups investigating this
modality, for example the Xtreme Everest 2 research consortium has
published results of the MFI for 133 patients measured at three time
points [5]. Collaboration could augment not only the volume of data but
help address the class imbalance as MFI has been shown to be reduced
in the high altitude environments studied by this group [11].

6.2 Modelling

Given the intrinsic temporal quality of ’flow’, it is possible that more
sophisticated methods for modelling the time dimension may aid
predictive accuracy. Such approaches may include a neural network with
separable spatial and temporal convolutions which is able to take the
sequence of frames as input, encompassing both stages of the
CNN-RNN model. Limited by the number of labels available, we consider
unsupervised approaches such as variational autoencoders or
normalising flow models which are able to learn a latent representation of
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the input may offer the possibility of density estimation. Learning such a
distribution from highly imbalanced data, as seen in our experiments,
could then allow for classification of the minority class to be
reconceptualised as an outlier detection problem. This may suit the
clinical application of an algorithm where greater importance may be
placed on automatic identification of the minority/abnormal/pathological
class. Additionally generative models may offer the potential to produce
synthetic data which could be used to augment the small dataset for other
models such as those described in Section 5.

6.3 Alternative approaches

We approached this problem as a classification problem, when in reality
the patients present with scores on a continuous scale. We assume that
the MFIv scores 0.0 to 3.0 can be grouped into 4 classes - but we have
little evidence to say that change from a score of 0.0 to 0.51 is equal to
change from 2.49 to 3.0. Our principle component analysis results
also suggest no clear separability of classes. Future work could either: a)
identify appropriate boundaries between scores based on clustering of an
automatically measured metric from a specific feature in the image, or b)
investigate an alternative approach that can extract features and provide a
continuous output metric which clinicians can then apply boundaries too.
For example, if a score 1.0 to 50 was produced or 1 to 5, clinicians can
still set their boundaries and clinical pathways based on the original video
presentations.

6.4 Re-evaluating results

Above, we have trained CNNs to classify images according to four
classes i.e. MFlv scores equal to 0, 1, 2 and 3. However, the CNN in first
instance assigns to each input, either a video or an image, a probability
for its belonging to each of the classes. For example, this is how
probabilities were assigned to each MFlv class in one of our CNN + RNN
runs:
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Do

4

b2

b3

Nooabhwh =

0.008762
0.992866
0.007621
0.010822
0.008873
0.010770
0.007669

0.007320
0.005654
0.020966
0.017582
0.007911
0.009339
0.013442

0.090191
0.000817
0.432366
0.161700
0.095709
0.112526
0.138968

0.893727
0.000663
0.539047
0.809896
0.887506
0.867364
0.839921

Below, we show a comparison between outputting the class with the
highest probability and interpolating between each class using the
probabilities as weight, where the final MFIlv prediction is calculated
as

MFlv (predicted) = py - 0+ p1 - 1 +pa -2+ p3 - 3.

Do P1 D2 ps class weighted
1 0.008762 0.007320 0.090191 0.893727 3 2.8688
2 0.992866 0.005654 0.000817 0.000663 0 0.0092
3 0.007621 0.020966 0.432366 0.539047 3 2.5028
4 0.010822 0.017582 0.161700 0.809896 3 2.7706
5 0.008873 0.007911 0.095709 0.887506 3 2.8618
6 0.010770 0.009339 0.112526 0.867364 3 2.8364
7 0.007669 0.013442 0.138968 0.839921 3 2.8109

Next, we compare this set of two predictions ("class” and "weighted”) with
the true underlying MFlv assigned by clinicians to each video.
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class weighted true MFlv

1 3 2.8688 2.86
2 0 0.0092 0.25
3 3 2.5028 2.47
4 3 2.7706 0.03
5 3 2.8618 2.92
6 3 2.8364 2.52

This set of predictions is made on a test set of 104 videos. To conclude,
we can understand whether predictions would improve using a weighted
approach by computing and comparing the mean squared error for the two
predictions. In the scenario considered here, we obtain MSE(class, MFIv)
= 0.98, whereas MSE(weighted, MFIv) = 0.79. (Note that comparing the
true MFlv rounded to the nearst integer to the predicted classes (as done
in the confusion matrix) would yield an even higher MSE at 1.01 for this
scenario.)

6.5 Video stability & quality

In this report, we addressed the challenge of predicting perfusion indices
from a single DFM video sequence using machine learning techniques
and exploratory data analysis. One of the main contributions were the
exploration of various algorithms with a strong analysis of CNN for this
problem. The main focus of the report and the entire team was to deliver
a proof-of-concept which we could obtain through the aforementioned
algorithms. We further proposed methods to improve the video quality
and leading the way to optimal input videos that can be used in
implementing a video stability analysis tool. Overall, as discussed in
this research could inform the development of a DFM pen with an
integrated IMU that can provide instant feedback to the clinician as to
whether the recording is of sufficient quality.
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7 Team members

7.1 Participants

Chris Tomlinson Chris is an Anaesthetics & Intensive Care registrar
undertaking a PhD at the UCL CDT in Al-enabled Healthcare Systems.
He has interest in microcirculation after working on the Xtreme Everest 2
expedition which used sidestream darkfield imaging (similar to DFM) to
study hypoxic acclimatisation in Sherpa’s & Westerners to identify
biomarkers of (mal-) adaptation that may inspire novel diagnostic/
therapeutic targets for the cellular hypoxia seen in critical illness. Chris’s
contributions to this DSG challenge include exploring class weights
adjustment to address class imbalance, future work directions, and
implementing dimensionality reduction and 2D-CNN+ RNN.

Jan Grols Jan is a PhD student at the University of Bath. He graduated
from the laboratory of fluid separations, TU Dortmund, with an MSc in
Chemical Engineering. He is working together with Dr Castro-Dominguez
to develop a machine learning assisted approach for new pharmaceutical
drugs. Jan’s contributions to this DSG challenge include exploring data
augmentation approaches.

Ramit Debnath Ramit is a computational social scientist and a Gates
Scholar based at the University of Cambridge. He uses data science to
inform public policy on climate and energy justice issues, some of his
recent work is being presented at COP26. He has a particular interest in
developing novel data-driven methods that can enhance social
decision-making to address energy poverty and climate change. Ramit’s
contributions to this DSG challenge include conducting and writing
literature review.

Sarah Johnson Sarah will soon start work as a Post Doc at Stanford
University, working within the Digital Athlete Program, which focuses on
applying machine learning and modelling techniques to solve problems
within sport. She has previously worked for Dynamic Metrics, a gait
analysis company, as a researcher combining data analysis of sensor
data with musculoskeletal modelling and classification techniques.
Sarah’s contributions to this DSG challenge include studying video quality
issues, intensity difference analysis, limitations & future work directions,
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and exploring data pre-processing methods.

Max Barton Max is a PhD candidate at the University of Manchester. His
research interests include applying anomaly detection methodologies to
identify defective operations, and building soft sensors to predict qualities
of interests for use in industrial processing. Max’s contributions to this
DSG challenge include studying future recommendations & class
imbalance issues, implementing 2D-CNN with temporal gradient image,
and exploring modelling challenges.

Tianyu Han Tianyu is a PhD candidate in Physics at the RWTH Aachen
University. He is a Research Assistant at Physics of Molecular Imaging
Institute, where he develops mathematical and machine learning models
for pathology detection, classification, and state progression a nalysis. In
close collaboration with university hospital RWTH Aachen and Fraunhofer
MEVIS, he has developed a medical data sharing platform using
advanced generative adversarial networks combined with federated
learning to prevent the privacy leakage of patient information during the
process of medical data processing. Tianyu’s contributions to this DSG
challenge include implementing ridge detection and 2D-CNN with blood
flow maps.

Seyedeh Nazanin Khatami is a Postdoctoral Research Fellow at
Harvard Medical School and Mass General Hospital. She works on
multiple research projects including but not limited to developing data-
driven Machine Learning models to address opioid crisis in the US,
modeling Tuberculosis disease progression and transmission model in
people with HIV in low and middle income countries, and cost-
effectiveness analysis of interventions. She received her PhD from
University of Massachusetts Amherst where she developed mathematical
and computational models for disease prediction, prevention, and control
analysis with the focus on reinforcement learning algorithms to evaluate
phased public health decisions for infectious diseases like HIV and
COVID-19. Seyedeh’s contributions to this DSG challenge include
implementing temporal gradient and CLAHE.

Giacomo Baldo Giacomo completed his PhD in the School of
Mathematics at the University of Leeds studying evolutionary dynamics
and emergent phenomena in collective behaviour. Giacomo’s
contributions to this DSG challenge include exploring moving average
and pixel intensity analysis, while writing about data summary and results
re-evaluation.
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7.2 Facilitators

Aniketh Ramesh Aniketh is a doctoral student at the University of
Birmingham, working on facilitating human-interaction with variable
autonomy multi-robot systems. His work is highly interdisciplinary,
combining insights from Multi-Agent Al, swarm intelligence, human robot
interaction and human factors. Currently, he is exploring the merits of
quantifying a robot’s health using a set of robot vitals, analogous to a
human'’s vital signs. Aniketh’s contributions to this DSG challenge include
facilitating the challenge, along with Diego, while also exploring optical
flow approach and writing future work directions.

Diego Cammarano Diego is a Computer Scientist with a BSc/MSc
earned at Sapienza University of Rome. He has recently worked at the
European Medicines Agency and the European Central Bank on
data-driven projects related to the monitoring of the clinical trials, the
medicine marketing authorisation across EU and the statistical data
management from National Central Banks and other international
organisations. Diego’s contributions to this DSG challenge include
facilitating the challenge, along with Aniketh.

7.3 Principal Investigator

Kashif Rajpoot Kashif is an Associate Professor of Computer Science
and Programme Director for Computer Science and Al programmes at
the University of Birmingham’s Dubai campus. His research focuses on
developing computational and artificial i ntelligence s olutions f or data
science problems in healthcare. Kashif’'s contributions to this DSG
include preparing and guiding the challenge before and during the
DSG.
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