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Abstract—Adjusting the level of autonomy in human-machine
systems (e.g., human-robot systems) holds great potential for
achieving high system performance while maintaining operator
involvement. To support operators with the task of setting
the proper level of autonomy, we present a novel approach
to realise a Model Predictive Controller that determines the
optimal LoA for each tessellation in the robot’s path plan based
on the estimated performance degradation due environmental
adversities. We also report on an experimental evaluation of a
mixed-initiative system where both the operator and the Model
Predictive Controller are in charge of dynamically adjusting the
level of autonomy cooperatively while performing a challenging
navigational task with a mobile ground robot in a high-fidelity
simulation. To this end, we conducted a user study with 15
participants comparing the performance and user experience of
the model predictive system with a state-of-the-art system. The
results show significant benefits of the model predictive system
in terms of a reduction of conflicts for control and an improved
user experience. Additionally, there are indications of benefits
in terms of robot health and, consequently, performance for the
model predictive system.

Index Terms—Mixed initiative control, Adaptive automation,
Variable autonomy, Levels of autonomy, Levels of automation

I. INTRODUCTION

Future human machine systems will not operate on a fixed
level of autonomy (LOA) [1]. Instead, such systems will be
able to adjust the amount of autonomous functionalities and
operator support on-the-fly to match the requirements of the
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respective situation [2]. Such systems, which can leverage the
complementing competencies of Robot AI and humans [3]
are called Variable Autonomy (VA) systems [4]–[6]. Their
potential to be highly flexible and resilient to adversities makes
them useful in fields like space exploration [2], search and
rescue robotics [3], [4], military systems [7] and automated
driving [8].

While most early variable autonomy systems solely relied
on adaptive automation systems that automatically adjust their
LOA (e.g. [9], [10]), Mixed-Initiative (MI) systems provide the
operator with assistance in setting the LOA through an adap-
tive automation while still allowing for the flexibility to deviate
from the chosen LOA if desired [11]. Multiple studies found
benefits in terms of user preference and performance when
using MI systems as opposed to pure adaptive automations
[4], [12]–[14]. Nevertheless, the cooperation of the adaptive
automation and the operator in setting the appropriate LOA
leads to new challenges like the conflict for control [4] which
occurs if the operator and the adaptive automation disagree on
which LOA to choose. Additionally, it is still an open research
question if the performance of current adaptive automations
and MI systems can be improved further.

Our previous work [15], [16] introduced Model Predic-
tive Systems capable of automatically adjusting the LOA in
human-robot teams. These systems optimise robot health [17]
to reduce the probability of robot failure during task execution.
The robot health metric combines information available in the
form of models of the environment, robot, or human into a



scalar metric that estimates the runtime performance degra-
dation faced by a robot during task execution [17]. Although
our proof-of-concept simulation studies show the effectiveness
of Model Predictive systems [15], [16], their realisation on a
human-robot system has not yet been examined.

In this paper we present a novel approach to realise a Model
Predictive Controller (MPC) for LoA switching, which pre-
dicts the optimal LoA for each tessellation in the robot’s path
plan. We describe our implementation of a Mixed Initiative
Variable Autonomy (MI VA) system that uses this MPC AI
to initiate LOA switches. A rigorous experimental evaluation
of task performance, cognitive availability, and overall user
experience of our MI VA system is outlined by comparing it
to a state-of-the-art MI system, and its results are presented.

To this end, Section II elaborates on the results of related
studies and systems available in literature to choose a suitable
one for comparison. The implementation of the MPC for the
given use case is described in Section III, subsequently Section
IV elaborates on the used experimental methodology. The
results are presented in Section V and discussed in Section
VI with a brief conclusion in VII.

II. STATE OF THE ART

Several studies have investigated the effects of VA systems
e.g., on performance and workload. Parasuraman et al. [9]
examine the effects of adaptive task allocation in a flight
simulation scenario. They consider an adaptive automation
system to allocate tasks either to the operator or the automation
based on the operator’s performance. The results show that the
adaptive system leads to improved performance compared to
a fixed task allocation.

Prinzel et al. [18] developed a system using electroen-
cephalogram (EEG) measures for adaptive task allocation. The
EEG signals are used to measure operator workload and adjust
the level of automation accordingly. The study found that their
system reduces both the task load perceived by the participants
and the task error score compared to a control group. Aricò et
al. [19] present a more recent study supporting these results.

Kaber and Endsley [10] investigate the effects of LOA
and adaptive automation on performance, situation awareness,
and workload in a Multitask simulation. LOA shifts were
performed according to predefined schedules. The use of
adaptive automation led to improved secondary task perfor-
mance and workload while maintaining situation awareness
and primary task performance. These findings are supported by
[7] analyzing an adaptive automation adjusting LOA based on
task load during a reconnaissance mission with an unmanned
ground vehicle.

While the previously mentioned works investigated systems
that adjust their LOA automatically, more recent research
considers systems that allow for a cooperative LOA adjustment
of operator and automation: Li et al. [12] investigate the
use of such a mixed-initiative system to support human-
automation collaboration during a space teleoperation task.
The study found that the mixed-initiative system led to better
performance compared to adaptive automation systems. The

studies in [4], [13] confirm the benefits of mixed-initiative
systems over pure adaptive automations.

The Expert Guided Mixed Initiative Control Switcher
(EMICS) system of [4] compares current task performance to
the task performance expected from a task expert. If the current
performance is worse than the expected performance, an LOA
switch is initiated. EMICS is of special interest for our work as
it is both a recent contribution in the research field of mixed-
initiative LOA adjustment and features a comparable robotic
application like our simulation studies in [16]. Hence, EMICS
is used as the state-of-the-art system for the comparative study
presented in this paper.

III. MODEL PREDICTIVE CONTROLLER FOR LOA
SWITCHING

This section outlines our formulation of the problem, de-
scribes the required assumptions, and motivates them with
relevant literature. Our main contribution here, is that we
describe a data-driven method to estimate the expected per-
formance degradation due to adversities in the environment,
by combining techniques from automated path planning and
computer vision. We then use the robot vitals and robot health
framework [17] as a performance criterion, to map the state of
the environment to the optimal LoA during runtime. We also
describe how the system was implemented for our study and
comment on how our approach can be generalised.

A. Problem Formulation

Consider a variable autonomy robot with LoAs
{α1, α2, . . . , αm}, carrying out a navigation task in an
extreme environment. Here each value α is one possible
LoA realisation from A, the continuum between Manual
Control and Full Autonomy. This environment is filled with
adversities or performance degrading factors that may degrade
the robot’s performance during its runtime. We scope our
work on field repairable and non-terminal [20] performance
degradation that the robot faces during runtime, i.e, any
performance degradation faced by the robot can be fixed by
switching the robot to Manual control by a remote operator,
or by triggering pre-programmed recovery behaviours.

Once the robot is given a navigation goal, the robot’s
automated planner creates a feasible path plan P . This path
plan can be decomposed into a series of n tessellations
P = {s0, s1, . . ., sn} , where each tessellation si is an area
in the map through which the robot has to locomote to reach
the goal. The set of all possible tessellations is denoted by
S. We assume the tessellations sizes are chosen such that the
effect of performance degradation that the robot experiences
in each tessellation is independent of the other. Implementing
tessellation decomposition online will be the focus of our
future work, however readers are referred to existing literature
[21], [22] on the topic for a thorough review of path plan
decomposition techniques.

During task execution, a robot can encounter a variety
of performance degrading factors. Each factor denoted by



f is an element belonging to the set of all possible per-
formance degrading factors F . In each tessellation, a robot
can encounter a set of m performance degrading factors
F = {f1, f2, . . . , fm}, m ≥ 0. Alternatively, F = ∅ indicates
that there is no performance degradation present in the given
tessellation. Let I : S 7→ P(F) represent a function that
can scan tessellation i and return a set of all performance
degrading factors present in it, such that I(si) = Fi, Fi ⊆ F .
Techniques to detect information about the environment are
being researched extensively in the existing literature. One
approach is to use image semantics and computer vision
techniques [23], [24] to detect performance degrading fac-
tors. Alternatively, air-ground collaborative teams can be used
where a drone looks ahead on the map, detects performance
degrading factors, and communicates it to the ground robot
[25]. Therefore, we assume that in any tessellation si, the robot
is able to look ahead and calculate I(si+1) = Fi+1 using the
onboard camera and other sensors.

Let function Hexp : F ×A 7→ R denote a function that cal-
culates the expected robot health [17] for a given tessellation
given the performance degrading factors and the robot’s level
of autonomy. This gives Hexp(Fi, αi) = Hi. Therefore, the
level of autonomy most appropriate for a tessellation is one
that maximises the robot’s health:

α∗
i = argmax

α∈A
Hexp(Fi, αi) (1)

The MI VA system designed using the proposed MPC is
represented in figure 1. Every time a robot enters a new
tessellation, the state information I(si+1) = Fi+1 is calculated
and provided to MPC system. The MPC AI then chooses the
appropriate LoA for the system and sends that command to the
Control Mixer. The Control mixer then sends velocity com-
mands to the robot accordingly from either the human (through
joystick input), or from the robot controller responsible for
autonomous navigation. Additionally, the operator at any given
time has the capability to trigger switches, and changing the
LoA set by the MPC system.

B. Implementation

For clear demonstration, we introduce an example of an
indoor scenario to adapt the model. Based on the environment,
we segment the tessellations as shown in Figure 2. Using the
shortest feasible path P from the start to the goal (shown as
a dotted white line) the arena was split up into tessellations
(marked A, B, C, D). The shape of each tessellation was
decided based on the kind of performance degrading factor
present in that area. The letter A denotes areas where no
performance degradation is present (i.e., F = ∅). Laser noise
was present in B, and uneven terrain was present in C. In D,
both laser noise and uneven terrain affected task performance.

We use data from our previous work [17] to calculate the
expected robot health for each type of performance degrading
factor. That is, robot health from previous simulations of
a mobile robot navigation through an area with high laser
scanner noise, is used to estimate the Hexp in the tessellation

marked B. Similarly, Hexp for tessellations C and D were
calculated based on the robot health values for uneven terrain
with and without laser noise (respectively). These values were
calculated for each level of autonomy and stored in a lookup
table.

Therefore, Hexp for each ordered set (F, α) was substituted
as the average health of the robot when navigating through the
performance degrading factor F using LoA α. The algorithm
then uses (1) in real time to decide the optimal LoA for the
tessellation. Similarity measurement [26], i.e., matching each
new tessellation with the appropriate value of Hexp, is hard
coded for this implementation. However, we aim to address
this in our future work. More generalisable approaches in the
future could adapt scene recognition and traversability estima-
tion techniques [27]–[29] to calculate the expected health for
any tessellation.

IV. EXPERIMENTAL METHODOLOGY

The experiment investigates the effect of two MI VA system
designs on task performance, overall user experience, and cog-
nitive workload. Inspired by previous experiments by Chiou
et al. [6], each participant in this study used both EMICS
and MPC to carry out a mobile robot navigation task in a
simulated arena filled with performance degrading factors.
Simultaneously, they carried out a secondary mental rotation
task during the experiment. The secondary task was used
to induce additional cognitive workload on the operator, and
simulate the high stress nature of robotic missions in extreme
environments.

The robot used an MI VA system with 2 LoAs - 1)
Waypoint-based autonomous navigation and 2) Manual Con-
trol by an operator using a joystick. For waypoint navigation,
the Husky robot used the standard ROS Navigation stack. The
operator could dynamically switch between the LoAs using
buttons on their joystick. Two experimental conditions were
tested - EMICS and MPC MI VA System. We hypothesised
that in comparison with EMICS, the MPC MI VA system
will yield a better user experience, better performance in the
navigation task, more cognitive availability for a secondary
task and lower operator cognitive workload.

A. Experiment Design

The primary task was a mobile robot navigation task based
on an arena used in our previous experiments [17]. The design
of this arena was based on environment typically encountered
in Urban Search and Rescue tasks. A 2D scan of the arena
was first created for robot navigation planning. After the scan
was created, performance degrading factors like unforeseen
obstacles, uneven terrain, and laser noise were added to the
arena to degrade autonomous navigation performance (see
Fig. 3). To simulate the uncertainty and dynamic situations
encountered during navigation tasks in extreme environments,
the presence and location of these performance degrading
factors were neither incorporated into the robot’s planner, nor
were they communicated to the operator before the task.



Fig. 1. Block Diagram of the Mixed Initiative Variable Autonomy System that uses the Model Predictive Controller AI

Fig. 2. The tessellations (A to D) and the feasible robot path plan P (dotted
line) for the navigation task

A 3D object mental rotation task was used for the sec-
ondary task [30]. This is a visuospatial task added to increase
the overall cognitive demand of the task and recreate high
workload environments for robot operators (e.g., the need to
multitask in the remote inspection or robot-assisted disaster
response). Here participants were successively presented with
two 3D objects and asked if they are the same or different.
An example of two sets of 3D objects are shown in Fig. 4
Objects that were the same but rotated were classified as the
same, but mirrored objects were classified as different. Like the
experiments carried out in [31], the secondary task was carried

out by the operator simultaneously alongside the primary
task. While carrying out the primary task, the participant
simultaneously looks at the secondary task and says yes or
no (i.e. yes-same, no-different) and the experimenter presses
the corresponding keys to log the data. The control unit used
by each participant is shown in Fig. 5.

B. Experimental Procedure
A total of 15 test subjects participated in the experiments,

with usable data from 14 subjects. Data from one participant
had to be discarded because of a technical error during the
experiment. The experiment had a within-subjects study, where
all participants carried out both conditions. To minimise the
learning and fatigue effects, the order of the conditions was
counterbalanced for half the participants. On arrival, partici-
pants first filled out a background information questionnaire
to indicate if they had prior experience playing games, op-
erating heavy machinery, or using AI tools for work. Then,
participants were introduced to basic robot navigation and LoA
switching on a specialised training arena [31], [32]. They used
this arena to practice manually controlling the robot and were
asked to demonstrate minimum proficiency before moving on
to the task. This was done to ensure confounding factors due to
varying skill levels were minimised. Next, a different training
arena was loaded with additional obstacles and sensor noise.
Here participants were introduced to a couple of scenarios
autonomous navigation is degraded (e.g., due to unforeseen
obstacles and laser noise), how they impact the navigation, and
how LoA may improve navigation in such situations. It was
explained to the participants that the scenarios demonstrated
were not exhaustive and that there may be other factors in the
experiment which can degrade robot performance. To prevent
priming participants with knowledge of how either of the MI
VA systems worked, they were not provided training to use
the EMICS and MPC systems.

Participants were then introduced to the secondary task.
After explaining the task to them, they were given time to
practice the task, following which their baseline performance
on the secondary task was recorded. Before starting the first
experimental condition, the 2D map of the arena was shown
to the participants. The start and end points of the primary



Fig. 3. Navigation Task Arena (L to R): 1) Empty, 2) With obstacles and uneven terrain, 3) 2D map with start and finish points marked, and locations where
performance degradation is introduced.

Fig. 4. Examples of two sets of 3D Objects presented to participants in the
secondary task. The objects on the top are different from each other and the
bottom are the same.

(navigation) task were shown to the participants. They were
informed that the waypoints for navigation were predetermined
and set by the experimenter automatically for both experimen-
tal conditions. Each participant was told explicitly to focus
on the primary task, prioritise robot safety and minimise the
risk of robot failure. They were then asked to focus on the
secondary task only when they had the time.

Lastly, before starting the first experimental conditions, each

Fig. 5. The control unit used for the experiment. The participant controls
the robot using a joystick and views it on the screen. The secondary task is
shown on another laptop, and is monitored by the experimenter

participant was told that an AI would be assisting them with
LoA switching. It was made clear that both the participant
and the AI had equal authority and the option of switching
LoAs, i.e., that none of the agents was the ultimate authority
or ultimately in charge of LoA switching. Participants were
also told that the AI might sometimes trigger LoA switches the
operator disagreed with, i.e., the operator may have to override
the AI’s decision. In such situations, participants were asked
to verbally state ’Conflict’ so that the experimenter can note
it down. Independently, the experimenter also observed and
counted the number of conflicts, i.e., instance of operators
overriding AI initiated LoA changes with 2 seconds. This
was done to compensate for situations where the operator
may forget to verbally acknowledge conflicts. After finishing



each experimental condition, the participants filled out a raw
NASA-TLX rating questionnaire to indicate the overall cogni-
tive workload experienced during each experimental condition.
Lastly, before ending the experiment, each participant was
asked, ”If you were to carry out this navigation task in a new
environment using the same robot, which AI would you prefer
for assistance with LoA switching?”.

V. RESULTS

Results from experiments conducted on 14 participants
were computed and summarised in Table I. The participants
were within the age group of 23-35, with the approximately
65% male and 35% female participants. Around 50% of the
participants reported no prior experience with operating remote
heavy machinery, or with using AI and robots for work on a
regular basis. 46% of the participants indicated they frequently
play video games involving driving, flight simulation and
third person shooters, RPGs (roleplaying games), and sports.
The paired Wilcoxon’s Test was used to check for statistical
differences between both conditions in each metric, as they
were non-parametric matched pairs of data and had a sample
size of N=14. The null Hypothesis Ho was that no statistical
difference exists between the two experimental conditions.

In the primary task (i.e., robot navigation), no statistically
significant differences were observed in the total runtime.
The EMICS system and MPC system varied significantly
(p < 0.05) in how they utilized the LoAs. While 64% of
the task was spent in autonomy using the EMICS system,
the MPC used autonomy for only 55% of the total runtime.
Consequently, the mean robot health for the MPC system
during runtime was 3.591, and during the use of autonomy
was 3.791; which was higher than the EMICS system which
had an average health of 3.506 and 3.329 during autonomy.
Conversely, the average response time in the secondary task
was significantly (p < 0.05) better when EMICS was used
(7.923 Seconds, MPC = 10.443 Seconds). While the mean
number of objects detected in EMICS (30.067) was higher
than MPC (27.2), the overall accuracy in both experimental
conditions was relatively the same (88.158% for EMICS and
89.169 for MPC). Conflicts for control reported by participants
were 55% less when they used the MPC system than the
EMICS system. This was confirmed by the experimenter’s
observations, where in comparison to EMICS, 65% fewer
conflicts were observed for the MPC system.

Although the perceived cognitive workload of the MPC
system was lower on average, no significant differences were
observed in the NASA-TLX scores of both conditions. Out
of 14 participants, 9 said they would prefer using the MPC
system if they were to carry out a navigation task in a new
environment. Among the others, 4 felt no difference, and 1
participant preferred EMICS over MPC.

Most participants reported a better overall user experience
while using the MPC system and felt the conflicts of control
were the main reason for the difference between the systems.
Upon further enquiry, participants reported that they trusted
the LoA switches of the MPC system more, contributing to

its overall ease-of-use. For example, one of the participants
said - ”It felt the MPC system made LoA switches that I
would have”. Another participant said they ”found MPC more
reliable, as it intimated me about the problems before I even
saw them, whereas EMICS was useless to the point that I’d
rather switch manually”.

VI. DISCUSSION

This study demonstrates that information about a robot’s
runtime performance degradation in the form of Robot Vitals
and Robot Health [17] can be used to realise a predictive LoA
switching AI agent for Mixed-Initiative Variable Autonomy
systems. State-of-the-art approaches [4] to designing such sys-
tems highlight they are prone to conflicts for control between
the AI and Operator. While negotiation [33] and operator
state estimation [34] provide generalisable methods to counter
conflicts for control, we propose a predictive approach that
tackles some of the fundamental reasons conflicts happen. Our
predictive approach improves upon the performance criteria
used by the EMICS system, by using robot health as a
performance criterion. The robot health uses a set of multiple
vitals, which combine different aspects of robot performance
degradation to give more depth to the metric. Hence, the
MPC system is able to understand the environment better and
suggest LoA switches that the operator is more inclined to
agree with.

Experimental evidence suggests that our predictive approach
to switching is comparable to state-of-the-art in total runtime,
causes fewer conflicts for control, and improves the overall
user experience. The experiment also shows that the MPC
system uses autonomy more prudently. The MPC system
uses teleoperation in situations where the aggregate risk of
robot failure is higher and uses autonomy in situations where
the effect of performance degradation on the robot is low.
Additionally users reported fewer conflicts for control and
made fewer switches during the runtime. This suggests that
participants accepted AI initiated LoA switches more while
using the MPC system. This indicates that the MPC system
enables effective servicing of robots and improves overall
robot safety during its runtime.

Operators took longer to respond to their secondary tasks
when using the MPC system. This is likely due to the
additional time spent in manual control for the MPC system.
Since operators were explicitly told to prioritise robot safety,
extended periods of manual control added more cognitive
demand to the operator thereby impacting the time taken to
respond to the mental rotation task. Subsequent studies can
help alleviate this demand by allowing operators to trigger
pre-programmed recovery behaviours [35] when they want to
focus on a secondary task.

The MPC system is a predictive system and can minimise
the conflicts for control and risk of robot failure by pre-
emptively making LoA switches. On the contrary, reactive
systems like EMICS, which monitor robot performance online,
help mitigate unforeseen problems. Reactive approaches to
LoA switching can also easily encode expert knowledge and



TABLE I
SUMMARY OF STATISTICAL ANALYSIS

Primary Task EMICS MPC Paired Wilcoxon Test, Two Tailed

Total Runtime (Seconds) Mean = 170.907, SD = 19.590 Mean = 177.788, SD = 18.759 Z- Value = -1.1614, W Value = 34, p = 0.246

Average Health Mean = 3.506, SD = 0.492 Mean = 3.591, SD = 0.416 Z- Value = -0.596, W Value = 43, p = 0.549

Number of LOA Switches Mean = 13.714, SD = 3.604 Mean = 11.786, SD = 4.979 Z- Value = -0.816, W Value = 39.5, p = 0.410

Average Health during Manual Control Mean = 3.329, SD = 0.516 Mean = 3.283, SD = 0.455 Z- Value = -0.534, W Value = 44, p = 0.596

Average Health during Autonomy Mean = 3.579, SD = 0.562 Mean = 3.791, SD = 0.398 Z- Value = -1.099, W Value = 35, p = 0.271

Percentage of Runtime the Robot was Manually Controlled Mean = 36.307, SD = 12.868 Mean = 44.572, SD = 8.361 Z- Value = -2.417, W Value = 14, p = 0.016*

Percentage of Runtime the Robot was Autonomous Mean = 63.693, SD = 12.874 Mean = 55.430, SD = 8.416 Z- Value = -2.47, W Value = 14, p = 0.015*

Conflicts for Control Reported by Experimenter Mean = 6.429, SD = 1.910 Mean = 2.214, SD = 1.424 Z- Value = -3.296, W Value = 0, p = 0.001*

Conflicts for Control Reported by Operator Mean = 3.857, SD = 2.381 Mean = 1.714, SD = 1.489 Z- Value = -2.620, W Value = 8, p = 0.009*

Secondary Task EMICS MPC Paired Wilcoxon Test, Two Tailed

Average Response Time (Seconds) Mean = 7.923, SD = 3.348218 Mean = 10.443, SD = 6.099 Z- Value = -2.215, W Value = 21, p = 0.026*

Total Answered Mean = 30.067, SD = 14.405 Mean = 27.2, SD = 14.189 Z- Value = -1.3497, W Value = 31, p = 0.177

Accuracy % Mean = 88.158, SD = 10.088 Mean = 89.169, SD = 7.121 Z- Value = -0.313, W Value = 35, p = 0.756

NASA-TLX EMICS MPC Paired Wilcoxon Test, Two Tailed

Total Workload Mean = 50, SD = 14.821 Mean = 46.667, SD = 12.605 Z- Value = -1.224, W Value = 33, p = 0.222

*p<0.05

ground truth information during missions. Therefore, in the
future we aim to create AI agents that combine the strengths
of both predictive and reactive LoA switching capabilities
for Mixed-Initiative variable autonomy systems. One possible
limitation of our approach is that smaller tessellation sizes
may result in multiple LoA changes in quick succession. This
may cause more conflicts for control and higher workloads.
We aim to address this in our future work through Degree of
Autonomy adjusting systems [15], [16]. In contrast to LoAs,
DoAs enable input blending and smoother transitions between
different levels of operator control over the robot’s actions.

Anecdotally, one of the participants who preferred EMICS
over MPC stated - ’While MPC is Objectively better at LoA
switching, EMICS makes silly mistakes which are easier
to identify and correct. However, MPC may make smarter
mistakes that are harder to detect. Hence, I would rather
use EMICS’. As the MPC MI VA was more complex (i.e.,
predictive using an aggregate metric) than the EMICS (straight
forward goal-directed error metric and reactive approach),
actions of MPC MI VA were harder to anticipated. This remark
indicates that transparency and explainability should be key
design concerns for MI robotic systems.

VII. CONCLUSION AND OUTLOOK

This paper presented a novel approach to realize a Model
Predictive Controller AI for Level of Autonomy switching and
implemented a Mixed Initiative Variable Autonomy system
using this controller. For each tessellation on the robot’s
path plan the AI determined the optimal Level of Autonomy
based on the expected robot health [17], a metric to estimate
performance degradation due environmental adversities. On a
mobile robot navigation task, the proposed approach yielded
performance comparable to state-of-the-art Mixed Initiative

Variable Autonomy Systems, with fewer conflicts for control
between the AI and the operator, and better user experience.
Experiments on this system also showed that the AI switched
to autonomous navigation for situations where there was
low risk of robot failure. When there was a high probabil-
ity of robot failure, i.e., its autonomous capabilities being
compromised due to performance-degrading factors, the AI
switched to manual control by a human operator. Therefore,
the proposed approach enables autonomous robots to seek
assistance from human operators to prevent or mitigate failure,
thereby improving robot safety during task execution.

In the future, we plan carry out experiments with real robots.
We aim to incorporate computer vision and machine learning
techniques to estimate the expected robot health in real time.
Lastly, we also aim to realize a Degree of Autonomy switching
system to enable smooth transitions between different levels
of operator input.
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