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ABSTRACT

In this work we introduce the concept of Robot Vitals and propose a
framework for systematically quantifying the performance degrada-
tion experienced by a robot. A performance indicator or parameter
can be called a Robot Vital if it can be consistently correlated with
a robot’s failure, faulty behaviour or malfunction. Robot Health can
be quantified as the entropy of observing a set of vitals. Robot vitals
and Robot health are intuitive ways to quantify a robot’s ability to
function autonomously. Robots programmed with multiple levels
of autonomy (LOA) do not scale well when a human is in charge of
regulating the LOAs. Artificial agents can use robot vitals to assist
operators with LOA switches that fix field-repairable non-terminal
performance degradation in mobile robots. Robot health can also be
used to aid a tele-operator’s judgement and promote explainability
(e.g. via visual cues), thereby reducing operator workload while
promoting trust and engagement with the system. In multi-robot
systems, agents can use robot health to prioritise robots most in
need of tele-operator attention. The vitals proposed in this paper
are: rate of change of signal strength; sliding window average of
difference between expected robot velocity and actual velocity; ro-
bot acceleration; rate of increase in area coverage and localisation
error.
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1 INTRODUCTION

Variable Autonomy (VA) robotic systems are capable of exhibiting
multiple behaviours or autonomous capabilities, known as Levels of
Autonomy (LOA) [21]. To carry out a diverse range of tasks, robots
can be programmed with multiple LOAs. During run time, the LOA
best suited for the task at hand can be chosen on-the-fly. Alterna-
tively, programming tele-operation or manual control as one of
the LOA is useful when the autonomous abilities of the robot are
compromised. For example, if a robot gets stuck while navigating au-
tonomously, the LOA can be switched to tele-operation. The robot
can then be tele-operated and switched back to autonomous naviga-
tion when it is capable of functioning autonomously again. When a
human tele-operator is in charge of carrying out such LOA switches
during run time it is called a Human Initiative (HI) system. As the
number of robots used increases or the task gets increasingly com-
plex, tele-operators experience high cognitive workload [4, 14]. This
may result in the tele-operators making sub-optimal LOA choices
for robot(s), thereby reducing overall task performance[5, 10, 22].
Providing operators in HI systems with visual aids that suggest
the optimal LOA choice or which robot needs manual operation or
help, can reduce the overall cognitive load. Alternatively, allowing
an artificial agent to assist the tele-operator with carrying out LOA
switches will reduce the cognitive demand on the tele-operator,
while improving overall task performance. A system where both the
agent and the tele-operator collaborate to carry out LOA switches
is called a Mixed Initiative (MI) [12] system. Our research deals
with the design of artificial agents that can assist the tele-operator
with carrying out LOA switches.

To initiate LOA switches, an artificial agent would require - 1) A
set of parameters used to detect performance degradation experi-
enced by robots in extreme environments, 2) A metric binding such
parameters to quantify the severity of the performance degradation.
In our study, we refer to the former as robot vitals and the latter
as robot health. The use of robot vitals to carry out LOA switches
will facilitate explainability of the agent’s decisions and provide an
intuitive way of communicating the predicted performance of the
robot.

2 RELATED WORK

Various studies [3, 8, 18] have catalogued the different ways in
which robots fail or malfunction in real and experimental settings.
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Figure 1: Taxonomy of mobile robot failures used in analysis
adapted from [3]

Carlson et al. proposed the taxonomy([3] adapted in figure 1 for
classifying how UGVs physically failed in the field. Based on the
repairability of a UGV’s physical failures they were classified as
field-repairable and non field-repairable failures. Similarly based on
the impact of their failures they are classified as terminal and non-
terminal failures. Some examples of non-terminal field-repairable
issues include sub-optimal path planning, immobility due to camera
or laser scanner noise, camera occlusion etc. In our study, perfor-
mance degradation refers to field-repairable non-terminal failures
of mobile UGVs. In MI systems, an artificial agent can assist the tele-
operator by detecting when a robot is experiencing performance
degradation and switching to the LOA best suited to mitigate it.

Designing LOA regulating agents has received considerable at-
tention in existing literature[15, 16, 19]. However, there is little
agreement on parameters such agents would use, and a metric
that would quantify the extent of performance degradation experi-
enced by the robot during run time. One of the earliest studies on
quantifying robot performance degradation for LOA switching was
carried out by Valero et al. [24]. The authors proposed an agent
based LOA switching system that used four performance indicators
- the robot’s mean velocity after 4 and 15 seconds, displacement in
the last 2 seconds and area explored. The trigger values of these
indicators were tuned during experimentation. Similarly, a pilot
study of Mixed Initiative LOA switching for a single robot[7] used
the difference between the actual velocity of the robot and an ex-
pert planner. A fuzzy rule base then uses this value along with
the robot’s actual velocity to trigger LOA switches. Mendoza et al.
[17] estimated faulty behaviour in the ’CoBots’ platform by calcu-
lating the robot’s location independently using different sensors.
The robot compares localisation information generated individually
from wheel encoders, laser range finders and infrared scanners to
check for mismatches. The presence and magnitude of mismatches
are used to detect faults. Additionally, the robot’s knowledge base
generates an estimated time to task completion for each task allo-
cated to it. When the task takes longer than the estimated time to
complete, the robot flags a possible fault. In the absence of multiple
sensors that can give location information, the robot’s Lidar scan
data can be compared with the occupancy grid map to calculate a
reliability estimate[1].

3 ROBOT VITALS

In our work, we define robot vitals as a set of parameters that in-
dicate the status of the robot and it’s ability to continue operating

autonomously during performance degradation. When a robot is
experiencing little to no performance degradation, the robot vitals
should be within a fixed window of values. The window of values
may vary based on the robotic hardware or environmental condi-
tions. A change in one or more vitals can give clues about the exact
nature of performance degradation the robot is facing. Each vital is
ideally symptomatic of at least one performance degrading factor.
For the purpose of this study, we assume that any degradation in
performance is non terminal and can be repaired by timely switch-
ing of LOAs. Therefore, by monitoring a robot’s vitals it is possible
to monitor the robot’s performance and predict whether it needs
tele-operator assistance.

The existing literature usually does not differentiate between
metrics for a robot’s performance and metrics for overall perfor-
mance of the robot(s) in the task. Task performance metrics assess
how effective robots are in carrying out the assigned task. For
example in an urban search and rescue mission undertaken by a
multi-robot system (MRS), some of the task performance metrics
are [15] - targets/victims found, time taken to cover the area, work-
load distribution, rate of area coverage, number of repeated visits
to any given point on the map, tele-operator cognitive workload,
etc. While these metrics are useful to evaluate how well the MRS
carried out the task, they give no information about how each ro-
bot performed in the task. However, metrics like robot velocity,
robot information entropy [27], sensor noise, number of collisions
are useful to understand how well each robot performed during
the task. Consider the example of a game of soccer between two
teams. A team’s performance can be determined using metrics like
- number of goals scored, ball possession, number of yellow and
red cards issued, shots on target, fouls etc. However, some players
may feel unhealthy during the game and require medical aid or
substitution. This can be monitored by measuring each player’s
pulse, respiration rate, body temperature and gait speed [23] during
the game. Analogously, robot vitals along with overall task perfor-
mance indicators can communicate the status of each robot to the
tele-operator in an easy and intuitive way. Artificial agents can use
this information to trigger LOA switches in a manner that promotes
explainability.

3.1 Properties

We propose that robot vitals used for mobile UGVs should have the
following properties:

(1) Task Agnostic: Any chosen robot vital should work irre-
spective of the task given to the robot(s). It should be robust
to on-the-fly changes in task or mission goals.

(2) Correlation: Every robot vital should be demonstrably cor-
related to one or many forms of performance degradation
that the robot can experience. To establish this correlation,
the vitals may or may not require pre-processing like noise
removal, filtering or smoothing etc.

(3) Performance Metric: It should be possible to derive a scalar
measure of any robot’s health using the robot vitals so as
to quantitatively show that the health of one robot is more
"critical’ than the other. That is, at any given time the robot
health should be proportional to the performance degrada-
tion experienced by the robot.



3.2 List of robot vitals

Data from experiments carried out by [6, 7] was analysed for iden-
tifying an initial set of meaningful robot vitals. In [6] the authors
study HI LOA switching for a simulated navigation task using a ro-
bot with 2 levels of autonomy - Joystick Controlled Tele-operation
and Autonomous Control (robot navigates autonomously towards
way points given by the tele-operator). The robot’s performance is
degraded by introducing Gaussian white noise briefly during the
simulation. Similarly, the cognitive workload of the tele-operator
is increased by giving them a secondary task (mental rotation of
3D objects). In [7] the authors extend this work, by comparing the
performance of HI LOA switching to that of Robot Initiative LOA
switching (here the artificial agent is a software layer on the robot’s
on board computing) and MI LOA switching. These systems are
also then tested on a physical robot in field experiments and the
challenges of implementing such systems practically are identified.
The set of robot vitals for our preliminary work are listed below

Figure 2: Laser Scanner Reading with (above) and without
(below) Gaussian noise

3.2.1 Change in Signal Strength: One of the factors that cause
robots to fail in the field is laser scanner noise. The amount of
noise in a signal is usually measured using the signal-to-noise ratio
(SNR)[13]. SNR is the ratio of the power of the signal Ps to the
power of the noise Py. Most laser scans can be visualised as a black
and white image. An example of laser scans by robots in [7] with
and without Gaussian noise is given in figure 2. The Peak SNR
(PSNR) is calculated using equations 1 and 2 for any given signal.
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The maximum valid value per pixel MAX] is 255 in the case of
simple 8-bit black and white images. To calculate the PSNR, this
value is divided by the mean squared error. Here, the MSE or the
mean squared error[25] is calculated for the noise free image I;
and a noisy image I with two dimensional size ixj and c¢ channels.
The noise free image is available before experimentation. Instead,

we propose to measure the rate of change in PSNR between laser
scans made a few time steps apart to check the relative change in
signal strength. This value is denoted by Spsnr. To remove jitter
and artefacts, the rate of change of this value over a minimum time
of 0.5 - 1.0 seconds were calculated.

3.2.2 Velocity Error Average: Similar to the work carried out
in [7], we assume the existence of a task expert (e.g. an expert
navigation planner) that can provide the ideal task performance for
the human-robot system in the absence of performance-degrading
or other unexpected factors. The velocity error is calculated as the
difference between the robot’s actual velocity to the ideal velocity.
The exponential moving average of this value is used as the next
vital, denoted by verror-

3.2.3 Rate of Change of Area Coverage: The Manhattan dis-
tance [2] of the robot from the start position is used for the next
vital. The rate of increase of this distance from the start position,
or the robot’s previous way point gives the rate of increase of area
coverage dwaypoint-

3.24 Robot Acceleration: The rate of change of the robot’s ac-
tual velocity ¢ is used as the next vital. Usually a sudden drop in
acceleration is observed only when the robot is making a turn. If
such a drop is observed when in straight passage, it may be due to
some debris blocking the robot’s path.

3.25 Localisation Error: As described in [17], the position of
the robot can be calculated independently by using different sensors
like LIDAR sensors of the robot, its camera, wheel encoders and
GPS etc. While SLAM techniques combine independent measures
of the robot’s location to improve the reliability of the estimate
[9], measuring the difference between the location estimates by
different sensors gives an estimate of the noise in each sensors
value. In some cases, odometry noise could be caused by debris
lodged in the wheel. To accommodate for this source of performance
degradation, the localisation error is used as the next vital éposition-
Let X; be the position of the robot calculated using its odometry,
and X7 be the robot’s position calculated according to SLAM using
LIDAR [11]. The position error is given by Sposition = X1 — Xa.
This error value has an window of acceptable values. A high error
outside this window indicates that either the odometry calculation
or SLAM is not functioning properly.

4 ROBOT HEALTH

Let the vector of robot vitals for any robot i at time ¢ be given by
Vit. This vector is given by

t_ g8 t it . ot
Vi ={6pSNR: Verror dwaypoint’v’ 6positi0n} ®)

This vector of vitals characterise a robot’s health. Each of these
vitals are indicative of the degree of performance degradation ex-
perienced by the robot at any given time. A very high amount of
performance degradation may or may not directly result in the
robots failure. However when a robot experiences performance
degradation, it is highly probable that the robot will fail. Hence, it
is assumed that the probability of a robot’s failure is conditionally
dependent on each of the robot vitals.



The probability of failure of robot i at time ¢ is calculated using
the law of total probability[28] as given below

P(fi) = D P(filo)P(o) )

UEVI.’

As the robot is equally likely to fail due to a change in of the above
mentioned vitals, P(v) is assumed the same for each of the vitals
(in this specific case P(v) = 0.20).

The probability of robot failure given vital v is close to 0, as long
as the value of v is within a standard range. This probability gradu-
ally starts increasing as the value of v deviates from the standard
operating window. Figure 3 shows a density plot of different values
of Verror Observed during experiments on MI LOA switching[7]. It
was observed during experimentation that in many cases where the
robot was experiencing high performance degradation the value of
Verror Was close to 0.07. When the robot’s performance was satisfac-
tory, this value was closer to 0 — 0.01. This essentially indicates that
the robot’s performance deviated from that of an expert planner
the most when it was experiencing performance degradation.
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Figure 3: Density plot of velocity error average plotted from
previous experiment data

Modelling the probability of robot failure given ve,ror as a sig-
moid function[26] captures this probability distribution the best.
Thus, the probability distribution for robot failure given the velocity
error P(f|verror) is given by:

1

P(f|02rr0r) = L+e-cn (x—c2) (5)
The values of ¢1 and ¢2 are determined empirically to adapt to
the specific robotic hardware used for experimentation. For the
case given in Figure 3, the value of ¢; = 1000 and c; = 0.0685
to get sigmoid function where P(f|verror = 0.07) = 0.8176. For
Verror < 0.06 the probability of failure is trivial, and for values
Verror < 0.07 the probability sharply rises to 1. A similar model for
the probability of robot failure given each of the robot vitals can
be modelled as a sigmoid function. The exact trigger values can be

determined empirically.
In this study, we define the robot health as a scalar value that
captures the degree of uncertainty or ’surprise’ around the possible

outcomes of Vit . Uncertainty about the robot’s performance degra-
dation is directly proportional to the health of the robot. When a
robot is experiencing high performance degradation for a sustained
period of time, unless remedial actions are taken to address the per-
formance degradation the probability of failure is going to remain
high. Hence there is little uncertainty in the values of P(f) ob-
served. In such cases, the robot health should be low. Alternatively
if the robot is experiencing little to no performance degradation,
there is high uncertainty. This is because the robot may or may not
immediately encounter a situation that causes its performance to
degrade. During high uncertainty periods the robot health should
be high. To measure robot health as the degree of uncertainty sur-
rounding the vitals, we propose the use of information entropy[20].
The health of robot i calculated from time steps t; to tz is given by

t=t,

H{ = 5 —P(f)log(P(f) ©

t=t1

We conjecture that using threshold values of information entropy,
it is possible to assess whether the robot requires an LOA switch.
In MRS, tele-operator attention for two or more robots simulta-
neously experiencing performance degradation can potentially be
prioritised based on the entropy value.

5 CONCLUSION AND FUTURE WORK

This paper proposes a set of five robot vitals and the use of informa-
tion entropy as a metric for calculating the robot health. Using the
concept of robot vitals and robot health, we aim to provide the tele-
operator with information on the status of each robot in an easy
and intuitive way through visual cues. Robot vitals can show which
robots are performing poorly and need tele-operator attention. Our
first set of experiments will focus on validating the use of robot
vitals and robot health for quantifying performance degradation
in mobile UGVs. In these experiments, UGVs shall be subjected to
a set of performance degrading factors that increasingly impair
their ability to function autonomously. We aim to demonstrate that
changes in robot vitals and robot health during run time are statis-
tically correlated to the extent of performance degradation faced
by the robot in each experiment.

The current set of robot vitals work only for a limited set of use
cases. For example, the vital psyg can only be used for types of
noise that affect the signal strength (e.g. Gaussian White Noise).
Similarly, the vital vl,,,, is contingent on the availability of an
an expert planner during run time. We hope that our preliminary
experiments inform the creation of a robust set of robot vitals that
characterise more forms of non-terminal field-repairable perfor-
mance degradation observed in extreme environments.

Subsequent work shall extend the work carried out by Chiou et
al. [6, 7] and study how humans interact with variable autonomy
multi-robot systems. Using the robot vitals and robot health, we
aim to build artificial agents that can assist tele-operators with LOA
regulation in MI multi-robot systems. By measuring how overall
task performance and operator cognitive workload are affected by
the use of HI and MI systems, we hope to understand how better
interaction design can improve human multi-robot teaming.
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